

Algorítmica Numérica II

Guía de Aprendizaje – Información al estudiante

1. Datos Descriptivos:

-	
Asignatura	Algorítmica Numérica II
Materia	Optativa
Departamento responsable	Lenguajes y Sistemas Informáticos en Ingeniería del Software
Créditos ECTS	3
Carácter	Optativo
Titulación	Graduado/a en Ingeniería Informática por la Universidad Politécnica de Madrid
Curso	3°
Especialidad	No aplica

Curso académico	2011-2012
Semestre en que se imparte	5° y 6°
Semestre principal	5°
Idioma en que se imparte	Español
Página Web	Moodle de la asignatura (http://web3.fi.upm.es/AulaVirtual)

2.Profesorado

NOMBRE Y APELLIDO	DESPACHO	Correo electrónico
Dolores Barrios Rolanía	5214	dbarrios@fi.upm.es
Antonio Tabernero Galán (coordinador)	5206	ant@fi.upm.es

3. Conocimientos previos requeridos para poder seguir con normalidad la asignatura:

Asignaturas superadas	Algorítmica Numérica
Otros resultados de aprendizaje necesarios	

4. Objetivos de Aprendizaje

COMPETENCIAS ASIGNADAS A LA ASIGNATURA Y SU NIVEL DE ADQUISICIÓN		
Código	Competencia	Nivel
CG 1/21	Capacidad de resolución de problemas aplicando conocimientos de matemáticas, ciencias e ingeniería	3
CE 14/15	Conocer el software, hardware y las aplicaciones existentes en el mercado, así como del uso de sus elementos, y capacidad para familiarizarse con nuevas aplicaciones informáticas	2
CE 19/20	Conocimiento de los tipos apropiados de soluciones, y comprensión de la complejidad de los problemas informáticos y la viabilidad de su solución	2
CE 3/4.	Capacidad de elegir y usar los métodos analíticos y de modelización relevantes, y de describir una solución de forma abstracta	3

LEYENDA: Nivel de competencia: conocimiento (1), comprensión (2), aplicación (3) y análisis y síntesis (4),

UNIVERSIDAD POLITÉCNICA DE MADRID FACULTAD DE INFORMÁTICA

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA			
Código	Resultado de aprendizaje	Competen- cias asociadas	Nivel de adquisi- ción
RA1	Desarrollar la solución matemática y algorítmica mas apropiada a un problema informático que requiera un tratamiento especialmente complejo, analizando y exponiendo su viabilidad.	CE 19/20 CE 14/15	
RA2	Resolución de problemas e implementación de algoritmos numéricos.	CG 1/21 CE 3/4 CG 1/21	
RA3	Conocimiento y manejo de software numérico.	CE 14/15	

5. Sistema de evaluación de la asignatura

	INDICADORES DE LOGRO		
Ref	Indicador	Relaciona-do con RA	
I1	Conocer las implicaciones que conlleva la implementación en máquina, con aritmética inexacta y recursos finitos, de algoritmos matemáticos.	RA2	
l2	Conocer los algoritmos habituales usados en la resolución de los problemas que aparecen en computación numérica.	RA1, RA2	
13	Capacidad para discernir las características de convergencia y eficiencia computacional de los métodos numéricos estudiados y sus implementaciones.	RA1,RA2	
14	Capacidad para implementar adaptaciones de los algoritmos estudiados a problemas específicos	RA1,RA2,RA3	
l5	Capacidad para escribir programas implementando los algoritmos descritos.	RA3	

EVA	LUACION SUMATIV	A	
Breve descripción de las actividades evaluables	Momento	Lugar	Peso en la calif.

UNIVERSIDAD POLITÉCNICA DE MADRID FACULTAD DE INFORMÁTICA

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

EVALUACION SUMATIVA

Breve descripción de las			Peso en la
 Trabajos y prácticas desarrollados en el tema 1 Pruebas previstas (ver CRITERIOS DE EVALUACIÓN) 	 Momento Durante el curso (fechas a confirmar en clase) Fechas previstas para exámenes 	Aula en donde se desarrolle la actividad	calif. 50%
 Trabajos y prácticas desarrollados en el tema 2 Pruebas previstas (ver CRITERIOS DE CALIFICACIÓN) 	 Durante el curso (fechas a confirmar en clase) Fechas previstas para exámenes 	Aula en donde se desarrolle la actividad	50%

Total: 100%

FACULTAD DE INFORMÁTICA Campus de Montegancedo Boadilla del Monte. 28660 Madrid

CRITERIOS DE CALIFICACIÓN

En la convocatoria ordinaria el método de evaluación habitual de la asignatura es el de evaluación continua. Conforme a la normativa prevista por la UPM, se admite también el método de evaluación única para aquellos que así lo deseen.

Evaluación ordinaria continua:

Para poder superar positivamente la evaluación continua se requiere la asistencia a un mínimo del 80% de las actividades evaluables desarrolladas en el aula. Estas actividades consistirán en prácticas de laboratorio o problemas propuestos para ser resueltos de forma individual o en grupo en el aula. Estas actividades evaluables serán anunciadas a lo largo del curso y se agruparán en dos bloques, correspondientes a los respectivos bloques de contenidos. Para superar la asignatura es necesario obtener una nota mínima de 3'5 sobre 10 en cada una de los dos bloques. En este caso la nota obtenida será la media aritmética de la conseguida en ambos bloques, tal y como se especifica en la tabla de evaluación sumativa.

Evaluación única: Acorde a la normativa de exámenes (artículo 20.2) de la universidad, se permite una evaluación única, no continua, para aquellas alumnos que así lo soliciten. Los alumnos que lo deseen deberán solicitarlo por escrito al coordinador de la asignatura en un plazo no superior a 30 días tras el inicio de las clases.

Aquellos alumnos que se acojan al método de evaluación única serán evaluados mediante un examen final que constará de dos partes, ambas diseñadas con el objetivo de comprobar si el alumno ha superado los resultados de aprendizaje de la asignatura.

- 1. El **examen final (problemas)** Consistirá en la resolución y presentación por escrito de varios problemas propuestos. La fecha será la fijada por Jefatura de Estudios en el calendario anual.
- 2. El **examen final (laboratorio)** Consistirá en la realización de una práctica breve o ejercicios computacionales en el laboratorio. La fecha será publicada con la debida antelación.

Los alumnos que decidan ser evaluados por este método necesitarán superar ambas partes para superar la asignatura.

UNIVERSIDAD POLITÉCNICA DE MADRID FACULTAD DE INFORMÁTICA

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

CRITERIOS DE CALIFICACIÓN

Evaluación extraordinaria:

En la convocatoria extraordinaria, el método y los criterios de evaluación serán los mismos establecidos en la evaluación ordinaria única.

6. Contenidos y Actividades de Aprendizaje

CONTENIDOS ESPECÍFICOS		
Bloque / Tema / Capítulo	Apartado	Indicadores Relacionados
Tema 1: Optimización	 Introducción: definiciones y conceptos en optimización Métodos deterministas de optimización Algoritmos genéticos 	l1-l 5
Tema 2: Resolución numérica de ecuaciones diferenciales.	 Introducción: Planteamiento de ecuaciones diferenciales en la modelización de problemas. Orden y dimensión de un sistema de ecuaciones diferenciales. Implementación de métodos de un paso y multipaso. 	l1-l5

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

7.Breve descripción de las modalidades organizativas utilizadas y de los métodos de enseñanza empleados

Table 7. Modelidades organizativas de la enseñanza			
MODALIDADES ORGANIZATIVAS DE LA ENSEÑANZA			
Escenario	Modalidad	Finalidad	
	Clases Teóricas	Hablar a los estudiantes	
	Seminarios-Talleres	Construir conocimiento a través de la interacción y la actividad de los estudiantes	
88 A 6 A 89 B	Clases Prácticas	Mostrar a los estudiantes cómo deben actuar	
	Prácticas Externas	Completar la formación de los alumnos en un contexto profesional	
E	Tutorías	Atención personalizada a los estudiantes	
525	Trabajo en grupo	Hacer que los estudiantes aprendan entre ellos	
	Trabajo autónomo	Desarrollar la capacidad de autoaprendizaje	

Tabla 9. Métodos de enseñanza		
MÉTODOS DE ENSEÑANZA		
	Método	Finalidad
9	Método Expositivo/Lección Magistral	Transmitir conocimientos y activar procesos cognitivos en el estudiante
••••	Estudio de Casos	Adquisición de aprendizajes mediante el análisis de casos reales o simulados
	Resolución de Ejercicios y Problemas	Ejercitar, ensayar y poner en práctica los conocimientos previos
₽	Aprendizaje Basado en Problemas (ABP)	Desarrollar aprendizajes activos a través de la resolución de problemas
	Aprendizaje orientado a Proyectos	Realización de un proyecto para la resolución de un problema, aplicando habilidades y conocimientos adquiridos
\gg	Aprendizaje Cooperativo	Desarrollar aprendizajes activos y significativos de forma cooperativa
→	Contrato de Aprendizaje	Desarrollar el aprendizaje autónomo

Se conoce como método expositivo "la presentación de un tema lógicamente estructurado con la finalidad de facilitar información organizada siguiendo criterios adecuados a la finalidad pretendida". Esta metodología -también conocida como lección (lecture)- se centra fundamentalmente en la exposición verbal por parte del profesor de los contenidos sobre la materia objeto de estudio. El término "lección magistral" se suele utilizar para denominar un tipo específico de lección impartida por un profesor en ocasiones especiales.

Análisis intensivo y completo de un hecho, problema o suceso real con la finalidad de conocerlo, interpretarlo, resolverlo, generar hipótesis, contrastar datos, reflexionar, completar conocimientos, diagnosticarlo y, en ocasiones, entrenarse en los posibles procedimientos alternativos de solución.

Situaciones en las que se solicita a los estudiantes que desarrollen las soluciones adecuadas o correctas mediante la ejercitación de rutinas, la aplicación de fórmulas o algoritmos, la aplicación de procedimientos de transformación de la información disponible y la interpretación de los resultados. Se suele utilizar como complemento de la lección magistral.

Método de enseñanza-aprendizaje cuyo punto de partida es un problema que, diseñado por el profesor, el estudiante ha de resolver para desarrollar determinadas competencias previamente definidas.

Método de enseñanza-aprendizaje en el que los estudiantes llevan a cabo la realización de un proyecto en un tiempo determinado para resolver un problema o abordar una tarea mediante la planificación, diseño y realización de una serie de actividades, y todo ello a partir del desarrollo y aplicación de aprendizajes adquiridos y del uso efectivo de recursos.

Enfoque interactivo de organización del trabajo en el aula en el cual los alumnos son responsables de su aprendizaje y del de sus compañeros en una estrategia de corresponsabilidad para alcanzar metas e incentivos grupales.

Es tanto un método, a utilizar entre otros, como un enfoque global de la enseñanza, una filosofía.

Un acuerdo establecido entre el profesor y el estudiante para la consecución de unos aprendizajes a través de una propuesta de trabajo autónomo, con una supervisión por parte del profesor y durante un período determinado. En el contrato de aprendizaje es básico un acuerdo formalizado, una relación de contraprestación recíproca, una implicación personal y un marco temporal de ejecución.

8. Recursos didácticos

RECURSOS DIDÁCTICOS						
	Prawda, J., Métodos y modelos de investigación de operaciones, Ed. Limusa, México (1996)					
	Allaire, G., <i>Numerical Analysis and Optimization</i> , Oxford Univ. Press, Nueva York (2007)					
	D.E. Luenberger, <i>Programación lineal y no lineal</i> , Addison-Wesley Iberoamericana, México (1989).					
	Nocedal, J., Wright, S.J., <i>Numerical Optimization,</i> Springer, Nueva York (2006)					
BIBLIOGRAFÍA	R. Fletcher, <i>Practical Methods of Optimization</i> , John Wiley (1990).					
	J.F. Epperson, An introduction to Numerical Methods and Analysis, Wiley-Interscience (2007)					
	S.C. Chapra, R.P. Canale, <i>Numerical Methods for Engineers</i> , Mc Graw-Hill International Edition (2006)					
	Golub, Ortega, <i>Scientific Computing and Differential Equations</i> , Academic Press (1992)					
	MATLAB PRIMER: http://terpconnect.umd.edu/~nsw/ench250/primer.htm					
	Numerical Computing with MATLAB: http://www.mathworks.com/moler					
RECURSOS	Página web de la asignatura (http://)					
WEB	Sitio Moodle de la asignatura (http://web3.fi.upm.es/AulaVirtual)					
	Laboratorio					
EQUIPAMIENTO	Aula					
	Sala de trabajo en grupo					

Cronograma de trabajo de la asignatura

Semana	Actividades en Aula	Actividades en Laboratorio	Trabajo Individual	Trabajo en Grupo	Actividades de Evaluación	Otros
Semanas 1-8	 Tema 1: Definiciones, conceptos Problemas del tema 1 (8 horas) 	Prácticas del tema 1 (8 horas)	 Estudio de definiciones y conceptos del tema 1 Problemas y trabajos propuestos Prácticas de laboratorio del tema 1 Total trabajo individual en el tema 1: 34 horas 		 Actividades de laboratorio Problemas y trabajos propuestos 	Observación: En las 34 horas de trabajo individual del alumno están comprendidas las 8 horas de laboratorio y las actividades evaluables en aula Total de carga:
Semanas 916	 Tema 2: Exposición de conceptos y desarrollo de ejemplos/ problemas. (7 horas) 	Prob. computacionales y prácticas (7horas)	 Repaso / comprensión de conceptos (8horas) Completar problemas computacionales y preparar examen problemas computacionales (16horas) TOTAL: 22 horas 		 Examen de laboratorio/problemas (2horas) 40% Entregas de problemas computacionales / prácticas (60%) 	Observaciones: Presencialidad: 16 horas. No presenciales: 24 horas Total de carga: 40 horas
Semana examenes		Examen final (laboratorio) para alumnos que opten por la evaluación única			Examen final (problemas) para alumnos que opten por la evaluación única	

Nota: Para cada actividad se especifica la dedicación en horas que implica para el alumno.